Extensions 1→N→G→Q→1 with N=C22 and Q=C3×D12

Direct product G=N×Q with N=C22 and Q=C3×D12
dρLabelID
C2×C6×D1296C2xC6xD12288,990

Semidirect products G=N:Q with N=C22 and Q=C3×D12
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×D12) = C3×C4⋊S4φ: C3×D12/C12S3 ⊆ Aut C22366C2^2:(C3xD12)288,898
C222(C3×D12) = A4×D12φ: C3×D12/D12C3 ⊆ Aut C22366+C2^2:2(C3xD12)288,920
C223(C3×D12) = C3×C127D4φ: C3×D12/C3×C12C2 ⊆ Aut C2248C2^2:3(C3xD12)288,701
C224(C3×D12) = C3×D6⋊D4φ: C3×D12/S3×C6C2 ⊆ Aut C2248C2^2:4(C3xD12)288,653

Non-split extensions G=N.Q with N=C22 and Q=C3×D12
extensionφ:Q→Aut NdρLabelID
C22.1(C3×D12) = C3×C4○D24φ: C3×D12/C3×C12C2 ⊆ Aut C22482C2^2.1(C3xD12)288,675
C22.2(C3×D12) = C3×C23.6D6φ: C3×D12/S3×C6C2 ⊆ Aut C22244C2^2.2(C3xD12)288,240
C22.3(C3×D12) = C3×D12⋊C4φ: C3×D12/S3×C6C2 ⊆ Aut C22484C2^2.3(C3xD12)288,259
C22.4(C3×D12) = C3×C23.21D6φ: C3×D12/S3×C6C2 ⊆ Aut C2248C2^2.4(C3xD12)288,657
C22.5(C3×D12) = C3×C8⋊D6φ: C3×D12/S3×C6C2 ⊆ Aut C22484C2^2.5(C3xD12)288,679
C22.6(C3×D12) = C3×C8.D6φ: C3×D12/S3×C6C2 ⊆ Aut C22484C2^2.6(C3xD12)288,680
C22.7(C3×D12) = C3×C2.Dic12central extension (φ=1)96C2^2.7(C3xD12)288,250
C22.8(C3×D12) = C3×C8⋊Dic3central extension (φ=1)96C2^2.8(C3xD12)288,251
C22.9(C3×D12) = C3×C241C4central extension (φ=1)96C2^2.9(C3xD12)288,252
C22.10(C3×D12) = C3×C2.D24central extension (φ=1)96C2^2.10(C3xD12)288,255
C22.11(C3×D12) = C3×C6.C42central extension (φ=1)96C2^2.11(C3xD12)288,265
C22.12(C3×D12) = C6×C24⋊C2central extension (φ=1)96C2^2.12(C3xD12)288,673
C22.13(C3×D12) = C6×D24central extension (φ=1)96C2^2.13(C3xD12)288,674
C22.14(C3×D12) = C6×Dic12central extension (φ=1)96C2^2.14(C3xD12)288,676
C22.15(C3×D12) = C6×C4⋊Dic3central extension (φ=1)96C2^2.15(C3xD12)288,696
C22.16(C3×D12) = C6×D6⋊C4central extension (φ=1)96C2^2.16(C3xD12)288,698

׿
×
𝔽